Representation Theorem for Stacks
نویسندگان
چکیده
منابع مشابه
Representation Theorem for Stacks
In this paper i is a natural number and x is a set. Let A be a set and let s1, s2 be finite sequences of elements of A. Then s1s2 is an element of A∗. Let A be a set, let i be a natural number, and let s be a finite sequence of elements of A. Then s i is an element of A∗. The following two propositions are true: (1) ∅ i = ∅. (2) Let D be a non empty set and s be a finite sequence of elements of...
متن کاملA Boundedness Theorem for Hom-stacks
The purpose of this note is to prove the following “boundedness” stated in [Ol]. Let X and Y be separated Deligne–Mumford stacks of finite presentation over an algebraic space S and define HomS(X ,Y) as in [Ol, 1.1]. Assume that X is flat and proper over S, and that locally in the fppf topology on S, there exists a finite flat surjection Z → X from an algebraic space Z. Let Y → W be a quasi-fin...
متن کاملThe Keel–mori Theorem via Stacks
Let X be an Artin stack (always assumed to have quasi-compact and separated diagonal over SpecZ; cf. [2, §1.3]). A coarse moduli space for X is a map π : X → X to an algebraic space such that (i) π is initial among maps from X to algebraic spaces (note that the category of maps from X to an algebraic space is discrete), and (ii) for every algebraically closed field k the map [X (k)]→ X(k) is bi...
متن کاملEnhanced Six Operations and Base Change Theorem for Artin Stacks
In this article, we develop a theory of Grothendieck’s six operations for derived categories in étale cohomology of Artin stacks. We prove several desired properties of the operations, including the base change theorem in derived categories. This extends all previous theories on this subject, including the recent one developed by Laszlo and Olsson, in which the operations are subject to more as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2011
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-011-0033-2